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Abstract 
 

In this article we will present a new 
multidimensional fuzzy interpolation method. 
This method, compared to the existing 
methods, does not require convex and normal 
fuzzy sets in the rules, but can be applied for 
arbitrary type of fuzzy sets. The new method 
gives an interpretable conclusion in every case, 
unlike the previously published methods. In 
the article we will also show a specialized, 
simplified version of the new method, which 
uses three of the most wide spread set types in 
practice: the crisp, the triangular, and the 
trapezoidal  fuzzy sets. The difference between 
the new and the former methods will be 
pointed out. 

 
 
1    INTRODUCTION 
 
The advantages of fuzzy controllers in practice, and the 
growing  number of applications are well known. The 
basic job of fuzzy controllers is to transform the input 
signal into membership degrees (observation fuzzy set), 
then to generate conclusion fuzzy set and, depending on 
needs, to deffuzify the conclusion [1]. Naturally a 
conclusion to an observation can be only given on the 
base of the knowledge got from earlier information, so a 
conclusion set can only be generated starting from the 
fuzzy sets obtained from a knowledge of the system to be 
controlled, and the complete rules for mapping of these 
sets. A conclusion fuzzy set can be generated using 
different theories 
 
The Mamdani-method [2] and other methods based on 
similar principles generate the conclusion basicly by a 
weighted considering of the consequent sets chosen by 

the system of rules from the knowledge. The weighting 
can be given as the intersection of the fuzzy sets (given 
on input universe set) and the observation. In this case, as 
a necessary condition, the knowledge must contain a 
fuzzy set whose intersection with the observation can not 
be empty. Or, stated in other way, the conclusion is 
generable if our knowledge up to this point contains the 
observation. If this condition fails the conclusion in not 
generable. As a matter of course, in this way we need the 
complete knowledge that contains the possible 
observations. So the support of the union of the input 
terms and the input universe itself must be equal. In the 
practice, even stricter conditions apply: the input terms 
should be located densely. This means that the union of 
the   cuts of the input fuzzy sets (e.g. for  = 0.5) 
should be equal with the universe set. The result of this 
"rule of thumb" is that even in case of a small system, the 
number of  rules is increasing considerably. Having a 
large number of rules arises a lot of problems both in 
respect to calculation time and to storage space [3]. 
 
The theories are the Fuzzy Interpolation methods [3], [4] 
and [5]. The importance and the difference to Mamdani-
method of the fuzzy rule interpolation is founded upon 
the ability of the method to deduce from, not only to 
interconnect the existing knowledge. That is, it is not 
necesary to have in the knowledge (up to this point) a 
fuzzy set whose intersection with the observation is not 
empty. Therefore these methods can be fruitfully used in 
applications where the available amount of knowledge is 
limited. In this case the available knowledge consists of 
the antecedent fuzzy sets A1..m and consequent fuzzy sets 
B1..m defined on the input universe set X and the output 
universe set Y respectively, where the support of the 
union of the sets A1..m is a subset of X. That is the 
knowledge is incomplete. Of course the rules of relation 
between antecedent set Aj and consequent set Bj are 
contained in the knowledge. 
 



So, knowing antecedents A1..m on X, and consequent B1..m 
on Y, relations Bj= FF

j (Aj )  (j=1..m) are already known 
as fuzzy sets (here FF denotes a relation. It is not a 
mathematical function, but a mapping from input 
(antecedent) fuzzy sets to consequent fuzzy sets). In case 
of observation A’ clonclusion B’ can be deduced by 
known relations between sets Aj and Aj+1 sorrounding A’ 
and their known consequents Bj and Bj+1. Therefore 
relation B’ = FF(A’) can be given by some weighted 
combination of relations FF

j and FF
j+1. So these methods 

give conclusion B’= Bj for different fuzzy sets A’= Aj and 
generate conclusions for arbitrary observations between 
Aj and Aj+1.  
Hence the main difference from the Mamdani-method is 
that interpolation methods generate the conclusion by 
means of weighted considering of F relations between 
antecedent and consequent sets, not by some kind of 
weighting of consequent fuzzy sets. Making possible in 
this manner the deduction of the conclusion on the base 
of limited information. 
 
Multidimensional extension of some interpolation 
methods exist. In this article we show a multidimensional 
version of Baranyi Gedeon Kóczy interpolation method 
[5]. Since we use only the terms flanking the observation 
let us use the following denotations: Xi is the input 
universe ( i = 1..n, n = the number of input universe), Ai,1 

and Ai,2 are the antecedents defined on Xi , Y is the output 
universe B1 and B2 are the consequents defined on Y, A'i 
is the observed input fuzzy set on Xi and B' is the 
conclusion  which is generated knowing A'1..n, A1..n,1, 
A1..n,2, B1 and  B2. The former interpolation methods 
induce several problems [6]: 
- They can be applied only for convex and normal sets. 
- They are not even interpetable for arbitrary convex and 
normal observation fuzzy sets, namely, ordering must 
hold (A i,j p A’i p Ai,j+1, Bj p Bj+1 where the observation 
set is A'i) 
- The method does not give a directly interpretable 
conclusion fuzzy set in every case ("loops" in the 
membership functions). 
- Using trapezoidalal, triangular or crisp sets, the shape 
is not preserved for the conclusion. It means that in case 
of fuzzy triangular or trapeziodal terms calculation by the 
three or four characteristic points e.g. by linear 
interpolation is not always sufficient as it gives only a 
rough approximation (except if some rather strict 
conditions apply). This is an important problem because 
of the computational complexity aspect. 
 
In this article we will present a new method that can be 
applied on arbitrary shaped fuzzy terms and that always 
results in directly "acceptable" sets, further on eliminate 
all the mentioned problems. To show the essential new 

points in this method, we will classify the former 
interpolation methods by their key idea: 
 
First class contains single term deduction methods. The 
conclusion (B’) is generated from observation A' and A1 a 
single rule, B1 using some kind of General Modus Ponens 
(GMP see e.g. the Revision Principle [7]). These methods 
can not give a conclusion if the intersection of A' and A1 
is empty. The problem is that in this case the distance 
between A' and A1 is not meaningful. 
Methods in the second class, use at least two rules. The 
Mamdani-method and other reasoning methods alike use 
the degree of matching between observation and at least 
two antecedents by calculating a weighted average (see 
e.g.)[2]. This is a natural way of interpolation. 
 
The third class applies approximation for the cuts and 
this can be used even if there is no formal matching. The 
linear interpolation method is the prototype of the 
methods in this class. These methods generate conclusion 
B' to observation A' using at least two rules (A1B1, 
A2B2) [4,5,6]. The basic idea of these methods is the 
following: If given are sequence of observations A1, A', 
A2 and a corresponding of sequence of conclusions B1, B', 
B2 where B' is unknown, B' is found by considering A'-s 
relative location in X and determining B' from B1 and B2 
accordingly. If A' is not comparable with Ai 
(A1 p A’ p A2) then this method can not be applied. 
However generalized interpolation and approximation 
methods (where polynomial or rational functions are used 
on the characteristic points of the -cuts, eliminate the 
difficulty of orderedness condition [8]. 
 
The method introduced in this article, goes back to the 
basic interpolation of fuzzy rules and searches for a 
conclusion similarly to the way of human thinking. When 
we hear a new question, at first we summarize our 
knowledge that is closest to the topic of the question, and 
we try to find questions that approach the new question 
as close as possible and whose answers are known. Then 
based on the comparison of our factual knowledge and 
the new question we deduce an approximate answer. 
Following this method, at first, we look for a fitting Ai’’ 
in the sequence of observation "between" known Ai,1 and 
Ai,2, which is the closest to Ai’ and we determinate the 
corresponding conclusion B’’ in the sequence of 
conclusions "between" B1 and B2. Actually the first step 
gives the multidimensional fuzzy set A’’ nearest to a 
multidimensional fuzzy set A’. Because the output base 
set is one-dimensional we have to transform the 
multidimensional fuzzy sets A’ and A’’ into the one-
dimensional sets S’ and S’’ with the same propierties. 
Then, the conclusion B’ to A i’ will be found by 
evaluating S’, S’’ and B’’ according to the Baranyi 
Gedeon Kóczy one-dimensional interpolation method [5].  



 
Of course, if we use general type fuzzy terms, the 
operations with these sets will need much computational 
effort, because enough points of the sets should be taken 
into consideration to have a good enough approximation. 
Therefore, for practical applications we prepare a special 
method that can be applied for crisp, triangular and 
trapezoidal fuzzy sets (that can be described by 2,3 and 4 
characteristic points resp.). 
2    DEFINITIONS 
 
2.1  x2=F(x1,p1,p2,c1,c2) IS THE REVISION 

FUNCTION 
  
Let x2= F(x1,p1,c1,c2) be that function, which results x2 in 
such a way that a/b=c/d is true both if x1 p1 and p1 < x1  

(see  figure 1). 
 
x1 p1            p1 < x1 

    
 
 
       

 
Figure 1 

 

x2=F(x1, p1, p2, c1, c2 ) = 
p if x p  

p a
b c p
b c p

2 1 1

2
2 2

1 1

;

;




 
 






otherwise  

where:    
a p x ;         

b 1
2

1 sgn a
1 1 

  ;
   (1) 

 
2.2 cp(A) CENTRAL POINT OF FUZZY SET A  
 
A (  x X, (x)A ) fuzzy set is given on base set X. 
The center of the fuzzy set is: 
 

     cp A
A A


sup inf 

2
;  where    height A :   (2) 

 
( This is a generalization of the concept of  the centre of 
the core.) 
 
3.  suppnorm  SU

SL A  IS THE NORMALIZATION OF  
THE SUPPORT OF FUZZY SET A FOR 
GIVEN SU, SL.  

 
Let A (  x X, (x)A ) fuzzy set be given on base set 

X, then let suppnorm  SU
SL A  be such a fuzzy set SNA, 

whose support’s minimum value is SL and maximum 

value is SU. Let the membership function of SNA= 
suppnorm  SU

SL A  be: 
  

      
    SNA Ax x cp A

a cp A
b cp A

cp A  












 











  (3) 

 
Where:  SU<cp(A)<SL; 
If  x<cp(A)  then: a=suppL(A)=inf(supp(A));  b = 
SL; 
If  x>cp(A)  then: a=suppU(A)=sup(supp(A)); b = 
SU; 
3 GENERAL METHOD 
 
According to the introduction, the determination of the 
concluson fuzzy set can be divided into three main steps. 
First, the fuzzy set A”i is to be determined on every input 
universe Xi. Second, the sets A’i and A”i are to be 
transformed into the sets S’ and S” on the universe S. 
Third, conclusion B' can be determined using S’, S” and 
B". 
 
For determining A”i and B” there are more conditions to 
be satisfied: A”i should be as close to A’i as possible. The 
closer is A”i to Ai,j the more similar they are. The same 
"similarity relation" is required between B” and Bj. In an 
extreme case, when observation A’i is identical with Ai,j 
(an already known antcedent) then A”i the closest 
information to A’i should be also identical with Ai,j. 
Similarly, B” should be identical with Bj, which implies 
that conclusions B' and B” are also the same. Therefore 
in the extreme case, when the observation is Ai,j, the 
conclusion should be Bj. 
 
Let us define the crisp distance between two fuzzy sets 
with the distance of  their centres [4]: 
 
d ( A1, A2 ) = d ( cp( A1 ), cp( A2 ) ).  (4) 
 
To avoid the problem of abnormal membership function 
shapes for B’ no other distance will be calculated, and all 
points of the membership function will be generated by 
this distance as a reference. For simplicity, let us consider 
Xi and Y be normalized for the interval [0,100] i.e. 
Mxi=max(supp(Xi))=My=max(supp(Y))= 
Ms=max(supp(S))=100, 
mxi=min(supp(Xi))=my=min(supp(Y))= 
ms=min(supp(S))=0. 
Let us turn fuzzy sets Ai,1 and Ai,2 around their centers as 
it is shown in figure 2. The rotated curves (Ai,1 and Ai,2) 
are considered as the cross-sections of a geometric solid. 
Fuzzy set Ai” can be found between Ai,1 and Ai,2 as the 
cross section of this imaginary geometric solid. To get 
Ai”, the closest fuzzy set to Ai’, we have to cut the solid at 

b d
c a

0    x1  p1    c1  0      x2   p2 c2 

b 
a

d
c

0  x1     p1  c1 0      x2  p2 c2 



the position of Ai’, using the above introduced distance 
measure. 
 
 
 
 
 
 
 
 
 
 
Figure 2: Determination of Ai” and B” by geometric solid 
cutting. 
Turning back the cross-section into its original position 
we will obtain Ai”, a set that satisfies our conditions, 
namely that is equal to Ai,1 or Ai,2 in an extreme case. 
 
There are more possibilities to define the solid based on 
the rotated fuzzy sets. Therefore, it is possible to handle 
more than two sets Aj as one solid. In a simple case, when 
we consider only two fuzzy sets, the geometric solid 
based on Ai,1 and Ai,2 can be easily constructed as a linear 
translation surface with A1 and A2 as rule curves. 
 
The second step is determination of sets S’ and S” using 
A’1..n and A”1..n. This transformation can be divided into 
four parts: 
 
1. Determination of centers and supports of fuzzy sets S’ 
and S”. 
 

cp S Ms
n
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Mx

i

ii

n
( ' ) ( ' )




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( ") ( " )





1
; (5) 

supp S Ms
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supp (S") Ms
n
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L i
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n



 ;   (8) 

supp S Ms
n

A
MxU
U i

ii

n
( ") ( " )





supp
1

;   (9) 

 
2. Normalization of fuzzy sets A’i and A”i to the same 
supports ( SNA’i and SNA”i ), while their centers does 
not change. The size of the common support is arbitrary, 
in this case it is d. 
 
SL = cp(A’i) - d/2; SU = cp(A’i) + d/2;  
SNA’i =  suppnorm A'SU

SL
i ;   (10) 

 
SL =cp(A”i) - d/2; SU =cp(A”i) + d/2; 

 SNA”i =  suppnorm A"SU
SL

i ;   (11) 
 
where:  i = 1..n; 
 
3. Determination of fuzzy sets SNS’ and SNS” point by 
point, using sets SNA’ and SNA”. y d[ , ]0 ; Sets A’i and 
A”i could be weighted, depending on needs, by w’i and 
w”i (w’i, w”i.   0 1, ). 
 




SNS

i SNA i
i

n

cp S d y

n
w cp A d y

'
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' ( ( ' ) / )
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" ( ( " ) / )

  
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2
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1

;  (13) 

 
4. Determination of fuzzy sets S’ and S”. 
 
SL=suppL(S’);  SU=suppU(S’);  

S’=  suppnormSU
SL SNS' ;    (14) 

 
SL=suppL(S"); SU=suppU(S"); 

S"=  suppnormSU
SL SNS" ;    (15) 

 
Determination of B” is similar to determination of A”i 
fuzzy sets. Satisfying the conditions, the geometrical 
solid, which is created by turning B1 and B2 (fig. 2), 
should be cut in such way that a/b is equal to: 
 

a b

cp A cp A
Mx

cp A cp A
Mx

i i

ii

n

i i

ii

n/

( ' ) ( )

( ) ( )

,

, ,













1

1

2 1

1

;   (16) 

 
Determination of  B’ based on  S’, S” and B” sets. 
Determination of SNB".  
 
SL=cp(B”)-d/2;  SU=cp(B”)+d/2; 
SNB”=  suppnorm B"SU

SL ;    (17) 
 
Determination SNB’ point by point  using SNS’, SNS”, 
SNB”. and  the revision function F.  
 

  x1 SNA' suppL SNA' y  ;    (18) 

  p SNA L SNA y1   " "supp ;   (19) 

  p SNB L SNB y2   " "supp ;   (20) 
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c1 = 1; c2 = 1;  y d[ , ]0 ; 
 

    SNB L SNB y F x p p c c' ' , , , ,supp   1 1 2 1 2 ; (21) 

 
Determination the conclusion B’ by suppnorm using set 
SNB”. 
 
SL=suppL(B’);  SU=suppU(B’);   (22) 
 

The conclusion is: B’=  suppnormSU
SL SNB' ; (23) 

The determination of S’ and S” by suppnorm using SNS’ 
and SNS” is not neccesary step in the method. It could be 
over  stepped. 
The conclusion is a regular fuzzy set in every case, since 
the normalization of the support must always result into a 
fuzzy set. Using this method we can get a conclusion for 
any type of fuzzy sets. 
 
4 SPECIALISED METHOD 
 
This method is a simplified version of the general 
method, which does not calculate all the points of the 
membership function, but only the four characteristic 
points. So this method is applicable for crisp, triangular 
and trapezoidal fuzzy sets, while it requires only a small 
amount of computational time. 
 
 
 
 
 
 

Figure 3: Key-steps in specialised method. 
 

According to the expressed in the introduction, we can 
consider the observation and the conclusion formed by 
the multidimensional A' set and the one-dimensional B' 
fuzzy set respectively, while the knowledge is composed 
of fuzzy sets A1, A2 (multidimensional) and B1 and B2 ( 
one-dimensional). So, as mentioned earlier, first we have 
to determine the fuzzy sets A” and B” (fig. 3). On the 
base of the sets Ai,1 and Ai,2 determined on every input 
base set the cross sections A”i must be found. 
For simplicity let us denote: Ai,3 =A’i, Ai,4 =A”i, B3 =B’, 
B4 =B”, S3 =S’, S4 = S”  and ai,j,k the k-th characteristic 
point of Ai,j in , and dA,i,j,k is the distance from cp(Ai,j). 
The method can be divided into three parts. 
 
1. Determination of fuzzy sets A”i:  
where:  i = 1..n;   k = 1..4; j = 3,4; 
 
dA,i,4,k = dA,i,1,k + (dA,i,2,k - dA,i,1,k )   Ci;  (24) 
 

where: Ci=
cp A cp A
cp A cp A

i i

i i

( ) ( )
( ( )

, ,

, ,

3 1

2 1




; S Ms
n

a
Mxj k

i j k

ii

n

,
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


1
;(25) 

 
2. Determination of  the conclusion fuzzy set B’: 
 where: j=1..3; 
 
dB,4,k =dB,1,k + ( dB,2,k - dB,1,k )   C;   (26) 
 
cp(B3) = cp(B4) = cp(B1) + ( cp(B2) - cp(B1 ))   C; (27) 
 

where: C= cp S cp S
cp S cp S

( ) ( )
( ) ( )

;3 1

2 1




cp  S Ms
n

cp A
Mxj

i j

ii

n





( ),

1
;(28) 

 
3. Determination of B3 from A3, A4, B4. 

where      Ms'Ms; My'My; 
b3,2=F(s3,2;s4,2;b4,2;cp(S3);cp(B3))   (29) 
 
b3,3=cp(B3)+ 
 F(dS,3,3;dS,4,3;dB,4,3;Mx-cp(S3);My-cp(B3));  (30) 
 
b3,1 = b3,2  F([ s3,1 / s3,2 ]; [s4,1 / s4,2 ]; [b4,1 / b4,2 ]; 1; 1) ;(31) 
 
b3,4=My'-(My'-b3,3)  F([(Ms'-s3,4)/(Ms'-s3,3)]; 
 [(Ms'-s4,4)/(Ms'-4,3)];[(My'-b4,4)/(My'-b4,3)];1;1); (32) 
 
5 EXAMPLES 
 
5.1 EXAMPLES OF THE GENERAL METHOD 
 
In the figure 4. the results obtained with the general 
method in the two-dimensional case can be seen. There 
are three diagrams in each one of  the figures (a,b,c,d). 
The first and second diagrams represent the input 
universe X1 and X2, while the third one shows the output 
universe Y. The computer simulation made possible the 
utilization of fuzzy sets drawn by hand, permitting 
observation of all the particularities in the process of 
conclusion generation in any type of fuzzy sets (fig. 4. 
a,b,c). The fig . c) shows a case, when the conclusion set 
can be difficultly given using only human 
comprehension. The fig. d) shows an example of the 
theory in a extreme case, with crisp sets. The response 
shows convincingly that B' is the relation AND between 
sets A'1 and A'2  as obtained by Zadeh's max-min 
operation. And the same is true for the relations between 
A11, A21 and B1 and A12, A22 and B2. The limits of the 
conclusion crisp set B' corresponds with the result of the 
min-max operation with minimal divergence. 
 

A" S' S” 

B" 

B' S 

A' B 
B 



 
a) b) 

 
c) d) 

 
Figure 4: Results of general mehod 

 
5.2 EXAMPLES OF THE SPECIALISED 

METHOD 

In the fig. 5 the results obtained with the specialised 
method in the two-dimensional case can be seen.  
 

 

 

 

 

 

 
 
Kóczy and Hirota 

 
Figure 5 

 
The first column shows the input base sets and the 
observation fuzzy sets A’1, A’2, and the antecedent sets 
A11, A12, A21, A22. In the second column can be found the 
conclusion fuzzy sets B’ generated by Kóczy and Hirota 
interpolation. The third column contains the results of 
the Vas-Kalmár and Kóczy-method, and the fourth 
column the results of specialised method. In the first line 
every method resulted into a directly interpretable 
conclusion. Comparing these three different methods it 
can be said that the Kóczy and Hirota’s method usually 
gives an almost identical conclusion (if it is directly 
interpretable) with the newly introduced specialized 
method. The second and third lines present examples 
where the specialized method still gives directly 
interpretable conclusions while the others do not. 

 
6 CONCLUSION 
 
The interpolation methods in the previous literature can 
be applied only on convex sets, while the generalized 
method introduced in this paper is applicable for 
arbitrary type fuzzy sets. As a matter of course, the 
general method makes calculation necessary for "every 
point" of the set. The specialized method can be applied 
on the most commonly used crisp, triangular and 
trapezoidal fuzzy sets, and  requires only small 
computational time. The original linear and nonlinear 
interpolation methods present another problem, namely 
the conclusion set is not always convex, therefore it is not 
sufficient to calculate only the four characteristic points 
of the set. Our specialized method eliminates this 
problem, because it results always into crisp, triangular 
or trapezoidal conclusions, therefore it is enough to 
calculate only the four characteristic points. Another 
difference is that the new method offers a directly 
interpretable conclusion in every case. 
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